A Secret Sharing Scheme Based on a Symmetric Design

نویسنده

  • Selda Çalkavur
چکیده

A , (m  ) n threshold secret sharing scheme is a method for distributing a secret amongst a group of participants. In a , (m  ) n threshold secret sharing scheme any m participants recover the secret, but no ) 1 (  m participants can [6]. Each of participants is allocated a share of the secret. The secret can only be reconstructed when the shares are combined together [2]. In this paper, we propose a secret sharing scheme based on a symmetric , (v , k  )  design. Then we call it a , (    k v  ) v threshold secret sharing scheme. Morever, we can say the secret sharing scheme is democratic of degree 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the design and security of a lattice-based threshold secret sharing scheme

In this paper, we introduce a method of threshold secret sharing scheme (TSSS) in which secret reconstruction is based on Babai's nearest plane algorithm. In order to supply secure public channels for transmitting shares to parties, we need to ensure that there are no quantum threats to these channels. A solution to this problem can be utilization of lattice-based cryptosystems for these channe...

متن کامل

Computationally secure multiple secret sharing: models, schemes, and formal security analysis

A multi-secret sharing scheme (MSS) allows a dealer to share multiple secrets among a set of participants. in such a way a multi-secret sharing scheme (MSS) allows a dealer to share multiple secrets among a set of participants, such that any authorized subset of participants can reconstruct the secrets. Up to now, existing MSSs either require too long shares for participants to be perfect secur...

متن کامل

Sharing several secrets based on Lagrange's interpolation formula and Cipher feedback mode

In a multi-secret sharing scheme, several secret values are distributed among a set of n participants.In 2000 Chien et al.'s proposed a (t; n) multi-secret sharing scheme. Many storages and publicvalues required in Chien's scheme. Motivated by these concerns, some new (t; n) multi-secret sharingschemes are proposed in this paper based on the Lagrange interpolation formula for polynomials andcip...

متن کامل

A NEW SECRET SHARING SCHEME ADVERSARY FUZZY STRUCTURE BASED ON AUTOMATA

In this paper,we introduce a new verifiable multi-use multi-secretsharing scheme based on automata and one-way hash function. The scheme has theadversary fuzzy structure and satisfy the following properties:1) The dealer can change the participants and the adversary fuzzy structure without refreshing any participants' real-shadow. 2) The scheme is based on the inversion of weakly invertible fin...

متن کامل

An Efficient Threshold Verifiable Multi-Secret Sharing Scheme Using Generalized Jacobian of Elliptic Curves

‎In a (t,n)-threshold secret sharing scheme‎, ‎a secret s is distributed among n participants such that any group of t or more participants can reconstruct the secret together‎, ‎but no group of fewer than t participants can do‎. In this paper, we propose a verifiable (t,n)-threshold multi-secret sharing scheme based on Shao and Cao‎, ‎and the intractability of the elliptic curve discrete logar...

متن کامل

Security Analysis of a Hash-Based Secret Sharing Scheme

Secret sharing schemes perform an important role in protecting se-cret by sharing it among multiple participants. In 1979, (t; n) threshold secret sharing schemes were proposed by Shamir and Blakley independently. In a (t; n) threshold secret sharing scheme a secret can be shared among n partic-ipants such that t or more participants can reconstruct the secret, but it can not be reconstructed b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014